
1

Root Finder
User’s guide
Version 3.0

2

Root Finder ... 1
User’s guide .. 1
Version 3.0.. 1
RootFinder. ... 3
Input Equation:.. 3
Input Method:.. 4
Output: .. 5
Methods Implemented: ... 6
Multiple roots:... 12
Root refinement: ... 13

The problem. ... 13
The solution. ... 14
The implementation. ... 15
Any drawbacks?.. 16

Any questions or comments:... 16
Disclaimer: .. 16
Reference: ... 17

3

RootFinder.

RootFinder finds all zeros (real or complex) of a polynomial of any degree with either real or
complex coefficients.

Input Equation:

The polynomial is typed in a straightforward manner. E.g.

2x^3+4x+7=0
x^4-2x^3+3x^2-4x+5=3
1.2x^3+.25E+2x^2+2.234E-2x-1.23E3=0

Even complex coefficient can be handled and specified within (): E.g.

(2+i3)x^5+(1-i2)x^3+5x^2-(-i2)x+(3+i4)=0
i denote the imaginary portion of a number.

The order of power is insignificant. E.g. 2+3x^2+4x=12 is accepted.
Also coefficients can be integer or floating point. Floating-point number following the syntax of:

[digits].[digits]E[+-]digits

Digits prefixing or postfixing the “.” i optional. However one must be present. E.g. “.E+1” is not
legal but “1.” , “.2” or “1.1” is all legal.

4

Also the sign of the exponent is optional so e.g. “1E+1”, “1E-12”, “1E3” is all legal.

Now the polynomial you type does not need to end with a “=0” it’s perfectly legal to put a value on
the right side of the equal sign e.g. x^2=12 or x^3+3x=(1+i3).

In some case you would like to solve polynomials that consist of multiplying several low order
polynomials with each other. A regular parentheses “(“ and “)” in between polynomial indicates
that RootFinder will multiply the polynomial before searching for the roots. E.g.

(x^2+3x+2)(x^3+x+4)=0 is the same as x^5+3x^4+3x^3+7x^2+14x+8=0
(x^2+3x+2)^2=0 is the same as x^4+6x^3+13x^2+12x+4=0

Or in order to test RootFinder you can type in (x-1)(x-2)(x-3)(x-4)=0 to check if the roots are
correct.

Operators like ‘+’, ‘-‘, ‘*’ are allowed e.g.
(x^2+3x+2)*(x^3+x+4)=0 # polynomial multiplication
(x^2+3x+2)-(x^3+x+4)=0 # polynomial subtraction

This allows input as complicated as:

(((((x^2+x)^2+x)^2+x)^2+x)^2+x)^2+x=0

Which is the same as:

x^64+32x^63+496x^62+4976x^61+36440x^60+208336x^59+971272x^58+3807704x^57+128439
80x^56+37945904x^55+99582920x^54+234813592x^53+502196500x^52+981900168x^51+176
6948340x^50+2943492972x^49+4562339774x^48+6609143792x^47+8984070856x^46+115009
01864x^45+13910043524x^44+15941684776x^43+17357937708x^42+17999433372x^41+1781
3777994x^40+16859410792x^39+15286065700x^38+13299362332x^37+11120136162x^36+89
48546308x^35+6939692682x^34+5193067630x^33+3754272037x^32+2625062128x^31+17771
71560x^30+1166067016x^29+742179284x^28+458591432x^27+275276716x^26+160617860x^
25+91143114x^24+50323496x^23+27049196x^22+14162220x^21+7228014x^20+3598964x^19
+1749654x^18+831014x^17+385741x^16+175048x^15+77684x^14+33708x^13+14290x^12+591
6x^11+2398x^10+950x^9+365x^8+132x^7+42x^6+14x^5+5x^4+2x^3+x^2+1x=0

RootFinder check the coefficients for overflow and issue a warning if a coefficient can’t be
represented correctly using IEEE754 standard.

Input Method:

From the Method pull down menu you can select which method to use for solving the polynomial
equation.

5

When ready hit the solve button to find the roots of the polynomial.

Output:

The roots will be displayed in the window below and the user can now print or save the solution.

6

Methods Implemented:

RootFinder make the user choose between more than 15 different methods of solving this
equation. And it is generally divided into method for polynomials with real coefficients and method
that can handle polynomials with complex coefficients. Some method is available in both a “real”
and “complex” coefficients version.

Methods for polynomial with real coefficients:
 Newton by Madsen
 Newton by Grant-Hitchins
 Durand-Kerner
 Jenkins-Traub
 Eigenvalue
 Bairstow
 Bairstow by C. Bond

Methods for polynomial with complex coefficients:
 Newton by Madsen
 Newton by Grant-Hitchins
 Laguerre
 Halley
 Jenkins-Traub
 Graeffe by Malajovich
 Durand-Kerner
 Aberth-Ehrlich

7

And finally we have two methods using arbitrary precision arithmetic where precision in terms of
significant decimals can be varied between 20-200 decimal precision.

Bairstow and Newton method has quadratic convergence meaning that for every iteration the
number of significant digits will double.

Laguerre and Halley have cubic convergence meaning that the number of significant digits triples
for every iteration. All methods use a modified version of the ‘base’ algorithm. In most cases the
base method will fail to convergence unless you make modification to the algorithm to bypass
numerical limitation or shortage. The modified algorithm can find new roots in a surprisingly few
numbers of iteration.

Barstow’s method is limited to real coefficients and to my knowledge has disappeared from
serious numerical analysis, primarily due to its bad habit of lacking convergence. However the
advantage of the method is that it always finds two zeros at a time. This implementation is
straight forward however with the added twist that it will calculate an error bound on the residual
portion (Rx+S) to find a stopping criteria that depends on the actual rounding errors in Bairstow’s
method.
For further information see: http://en.wikipedia.org/wiki/Bairstow's_method

Newton’s method:
Although all the Newton’s method basically is the same the three Newton methods: Madsen and
Grant-Hitchins differ significantly in their approach. My personal favorite is the method by
Madsen. [Bit 13 (1973) page 71-75] The reason is simplicity and elegance in all phases of
reaching the root. As have been pointed out by Wilkinson it’s important to have a stable deflations
of the polynomial by either finding the root in increasing magnitude and use forward deflation or
decreasing magnitude and use backward deflations. All method I have looked at is trying to find
the root in increasing magnitude and so do Madsen’s. However instead of using the mind less
zero as the starting point, Madsen instead use a starting point |z0| = ½ Min(

k
(|a0/ak|), k=1..n; that

guarantees that all roots has a higher magnitude than this starting point. The benefit is of course
that the starting point is somehow close to the lowest magnitude of the root. Now Madsen define
that if the root is not close to zero it’s in stage 1 otherwise the process is in stage 2. Define the
usual Newton step:

Dzk = - f(zk)/f’(zk); k>=0

The next step Zk+1 are found from zk in the following way:
Stage1:

A) if |f(zk+dzk)|<|f(zk)| Madsen calculate the numbers |f(zk+pdzk)|, p=1,2..; as long as
these are decreasing. i.e. Madsen stop when |f(zk+(p-1)dzk)|<=|f(zk+pdzk)| and put
zk+1=zk+(p-1)dzk

B) if |f(zk+dzk)| >= |f(zk)| the numbers |f(zk+2
-p

dzk)|, p= 0,1,2…p0 are examined in the
same way . If the sequence starts increasing we put zk+1=zk+2

-(p-1)
dzk; otherwise we

put zk+1=zk+2-p0dzke
i. Here /4<<3/4 and 1<=p0<=5. =arctan(.75) and p0=2

Stage 2: zk+1=zk+dzk

The Newton iteration at stage 2 is started if:
1) the stage 1 iteration has led to zk+1=zk+dzk

2) the fixed point theorem by Ostrowski ensures convergence of a Newton iteration with
initial value of zk+1

The search is stopped by either an error bound of evaluation of f(zk) or dzk is less than certain
machine dependent value. For polynomial with real coefficients Adams stopping criteria is used.
One of the nice part of using Madsen’s variable step size is that the Newton method maintains is

http://en.wikipedia.org/wiki/Bairstow's_method

8

quadratic convergence even for multiple roots. As an example of Madsen’s efficient Newton
iterations consider the polynomial (x-1)

3
(x+1)

3
(x-10)(x-100)=0. Clearly we have a triple root at 1.

The following table list the number of iterations needed for finding the 3 triple roots for each of the
Newton methods:

Method Madsen Grant-Hitchins Jenkins-Traub
Iterations 31 99 32

Grant-Hitchins [Computer Journal August 1973] is also a very solid Newton iteration although it
also tries to find roots with increasing magnitude it use composite deflation to ensure stable
deflations. Hitchins use a fixed starting point of 0.001+i0.1 and go from there. It also has some
clever detection of possible saddle points, but instead of dealing with the problem as Madsen
algorithm does, it return with a failed search. Likewise if f’(xk) is close to zero Hitchins give up the
search. Again Madsen’s approach is better where it just alter the directions of the search using
the angle arctan(.75) and starts a new Newton iteration. Grant-Hitchins has no special detection
for handling multiple roots.

Jenkins-Traub algorithm. It’s the most used black-box methods used in the industry today.
Wikipedia has an introduction to the algorithm. See http://en.wikipedia.org/wiki/Jenkins-
Traub_algorithm.
It’s also complicated and for further study I refer to the papers by Jenkins & Traub (See
reference at the last page). However it is interesting to note that before they applied the “three-
stage Algorithm” it actually goes through a number of standard Newton iteration until the root is
sufficient close before they apply this complicated algorithm. The Jenkins-Traub method is
available in for both real and complex coefficient polynomial.

Halley’s method distinguished itself from the Newton by required the calculation of the second
derivate of the polynomial in order to calculate the dzk value of the next step. Hence the
calculation time required per iterations is longer yet the convergence is cubic and therefore
requires less iteration than the Newton method. One way to describe the Halley’s method against
Newton is that a Newton step is the tangent interception of the x-axis while a Halley step is a
tangent Hyperbola interception of the x-axis as depicted below.

Figure 1 Newton Steps Figure 2 Halley Steps

A Halley step is giving by:

http://en.wikipedia.org/wiki/Jenkins-Traub_algorithm
http://en.wikipedia.org/wiki/Jenkins-Traub_algorithm

9

Dzk = - 2f(zk)f’(zk)/(2f’(zk)
2
-f(zk)f’’(zk)); k>=0

Of course Halley’s method suffers the same weakness as the Newton and needs to be modified
slightly to overcome the usual numeric shortcomings. Halley’s method has been enhanced by
adding the starting point algorithm as in the Newton Method by Madsen and the method of
altering directions near saddle point and multi steps Dzk etc as outlined by Madsen.
For further reference see: http://en.wikipedia.org/wiki/Halley's_method

Laguerre’s method shared the same need for calculation of the second derivate as with Halley’s
method. Laguerre has also been enhanced with the starting point and direction search change as
outline by Madsen in his Newton method.

A Laguerre step is giving by:

Dzk = - n / (max(G((n-1)(nH-G
2
)); k>0

Where G=f’(zk)/f(zk) and H=(f’(zk)/f(zk))
2
- f’’(zk)/f(zk)

For further reference see: http://en.wikipedia.org/wiki/Laguerre's_method

Graeffe’s method was among the most popular methods for finding roots of in the 19th and 20th
centuries. It was invented independently by Graeffe, Dandelin, and Lobachevsky (Householder
1959, Malajovich and Zubelli 1999). Graeffe's method has a number of drawbacks, among which
are that its usual formulation leads to exponents exceeding the maximum allowed by floating-
point arithmetic and also that it can map well-conditioned polynomials into ill-conditioned ones.
However, these limitations are avoided in an efficient implementation by Malajovich and Zubelli
(1999), which is the method implemented here. See the two reference at the last page on this
document for further reference or http://en.wikipedia.org/wiki/Graeffe's_method.

Durand-Kerner method is a method that solves all roots simultaneously. (see
http://en.wikipedia.org/wiki/Durand-Kerner_method) avoiding the polynomial deflation steps of the
other methods.

Abert-Ehrlich method like the Durand Kerner find all roots simultaneously.

The iteration formula is the univariate Newton iteration for the function

If the values are already close to the roots of p(x), then the rational function F(x) is

almost linear with poles at that direct the Newton iteration
away from the roots of p(x) that are close to them. That is, the corresponding basins of attraction
get rather small.

The Newton step in the univariate case is the reciprocal value to the logarithmic derivative

http://en.wikipedia.org/wiki/Halley's_method
http://en.wikipedia.org/wiki/Laguerre's_method
http://en.wikipedia.org/wiki/Graeffe's_method
http://en.wikipedia.org/wiki/Durand-Kerner_method

10

Thus,

results in the Aberth–Ehrlich iteration.

See http://en.wikipedia.org/wiki/Aberth_method.for further details.

Eigenvalue method finds the roots by creating the corresponding companion matrix for the
polynomials and find the eigenvalues which is the roots of the polynomial.

Multiprecision methods
Two multi-precision (20-200 digits precision) version of the Madsen Newton has been added to
test solving polynomials with high precision. Be aware that they take considerable longer that any
of the others methods.

http://en.wikipedia.org/wiki/Aberth_method

11

Examples:

Example: This is a 10
th

degree polynomial:
(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)(x-7)(x-8)(x-9)(x-10)=0

The number of iterations needed per method is:

Method Iteration Error

Laguerre 31 7.37E-11

Newton (Madsen) Real 37 1.11E-10

Newton (Madsen) Complex 38 1.45E-10

Halleys 52 3.82E-11

Bairstow 60 1.58E-11

Newton (Jenkins) Real 75 1.51E-10

Newton (Jenkins) Complex 86 1.56E-10

Newton (Hitchins) Real 91 8.07E-11

Newton (Hitchins) Complex 104 2.48E-11

Example: This is a 8
th

degree polynomial:
(x-1)

3
(x+1)

3
(x-10)(x-100)=0

The number of iterations needed per method is:

Method Iteration Error

Newton (Madsen) Real 31 6.75E-08

Newton (Jenkins) Real 32 3.69E-10

Newton (Madsen) Complex 42 4.38E-08

Laguerre 57 1.38E-05

Newton (Jenkins) Complex 65 5.74E-09

Halleys 74 1.23E-05

Newton (Hitchins) Real 99 2.14E-05

Newton (Hitchins) Complex 102 1.44E-05

Bairstow*) 239 6.01E-04
*) Although the root where correct it did exceed the maximum number of iteration

The result is as expected. Halley’s and Laguerre has cubic convergence while Newton and
Bairstow has quadratic convergence only when dealing with multiple roots Laguerre and Halley’s
show some weakness. Also since we are dealing with single roots only in this example the
Bairstow’s algorithm has the advantages that it always finds two roots at a time. In real life, where
we have complex conjugated roots, the Bairstow’s method will fall far behind the other methods.

12

Multiple roots:

All of the present methods face difficulties when dealing with multiple roots, as can been seen
from the below example the errors on found multiple roots is significant or very imprecise. This
lies in the nature of the function value of f(z) near multiple roots. In order to see how difficult it is a
graph showing the function value as a function of how far away we are for the ‘real’ root is shown.
In this example the polynomial with two triple multiple roots is used: (x-1)

3
(x+1)

3
(x-10)(x-100)=0

The y-axis is the value of f(z). The x-axis indicates the distance from the real root +1. Each tick
mark is a power of ten away from the root starting at -10

-14
, -10

-13
, -10

-12
going left at the graph

and +10
-14

, + 10
-13

, +10
-12

going to the right of the graph. The range is between -10
-5

…+10
-5

etc.
With this “low” calculated value of f(z) around 10

-12
from 0.99999..1.00001 we see that even when

we are “far” away from the root the calculate value of f(z) is so low that most method would
accept it as a root for the polynomial. Two other curves is also plotted f(z).low and f(z).high these
curves indicate the upper and lower bound when calculating the value of f(z) using interval
arithmetic. Also note that the curve f(z) several times cross the 0 value which can lead to false
detection of a ‘perfect’ root.

Function Value of Multiple roots

-1.00E-11

-8.00E-12

-6.00E-12

-4.00E-12

-2.00E-12

0.00E+00

2.00E-12

4.00E-12

6.00E-12

8.00E-12

1.00E-11

x - delta

f(
z)

f(z)

f(z).low

f(z).high

13

Root refinement:

In order to polish or refine already found roots, you will need to understand the limitation of
standard numerical search methods and the limitation in the precision of floating point arithmetic.
Standard search methods will limited the possible precision based on a number of factors.

The problem.

1) First all methods implemented in RootFinder use standard IEEE754 floating point precision
which limited the precision to approximate 16 decimals digits.
2) Secondly the stopping criteria for each root is usual some worst case bounds of the errors in
evaluation of the function value f(x). Even the famous Adam’s stopping criteria for polynomial with
real coefficients is an upper bound for the evaluation of f(x). So in essence none of the methods
really does take the precision to its potential limit.
3) When a root is found the deflation of that root yield a new polynomial with a lower degree with
new coefficients that is not exact due to arithmetic errors in the deflation process and the
imprecision of the deflating root. Errors from 1-3 does not usual build up to large errors when we
have well isolated roots. Fx (x-1)(x-2)(x-3)(x-4)(x+1)(x+2)(x+3)(x+4)=0 give 14-15 correct digits
for all found roots.

Polynomial: x^8-30x^6+273x^4-820x^2+576=0
Method: Real Newton (Madsen)
Solution is:
Root Iter. REAL IMAG
1: 0 - 3.999999999999998e+000
2: 0 + 2.999999999999996e+000
3: 6 + 4.000000000000004e+000
4: 5 - 1.999999999999999e+000
5: 5 - 3.000000000000002e+000
6: 4 + 1.000000000000000e+000
7: 5 - 1.000000000000000e+000
8: 5 + 2.000000000000000e+000
Compute time: 0 msec. Iterations 30

4) When it gets to multiple roots the problem get worse. Multiple roots suffer severely from
precision and as we deflate multiple roots the errors propagated down the polynomial to create
more and more imprecise roots. Fx. (x-1)

5
=0 has one root with 16 correct digits, 2 roots with 5

correct digits one with 3 correct digits and finally one with only 2 correct digits:

Polynomial: x^5-5x^4+10x^3-10x^2+5x-1=0
Method: Real Newton (Madsen)
Solution is:
Root Iter. REAL IMAG
1: 0 + 1.000199636548539e+000
2: 0 + 9.997950748092688e-001
3: 0 + 1.000002644321096e+000 - i2.023154325176408e-004
4: 13 + 1.000002644321096e+000 + i2.023154325176408e-004
5: 1 + 1.000000000000000e+000
Compute time: 0 msec. Iterations 14

(x-1)
8
=0 has one correct to 16 digits and everything else between 1 and 2 correct digits.

Polynomial: x^8-8x^7+28x^6-56x^5+70x^4-56x^3+28x^2-8x+1=0
Method: Real Newton (Madsen)
Solution is:

14

Root Iter. REAL IMAG
1: 0 + 9.983239343691635e-001 - i9.370282978126239e-003
2: 0 + 9.983239343691635e-001 + i9.370282978126239e-003
3: 0 + 1.005995707441628e+000 - i6.820254962098577e-003
4: 7 + 1.005995707441628e+000 + i6.820254962098577e-003
5: 4 + 1.008809339132710e+000
6: 0 + 9.912756886228529e-001 + i4.399484045926204e-003
7: 8 + 9.912756886228529e-001 - i4.399484045926204e-003
8: 1 + 1.000000000000000e+000
Compute time: 0 msec. Iterations 20

The solution.

The solution is to use a combination of several different approaches.

First to deal with IEEE754 limited precision we would need to polish the roots using higher
precision than IEE754 approx. 16 decimal digits precision. We use the author own
implementation of an arbitrary floating point precision packages. Furthermore there is a twist to
using higher precision arithmetic. Instead of just selecting let’s say twice the precision of the
standard IEEE754 e.g. 32 decimal digits we instead are using a variable precision throughout the
Newton iteration process that makes the final Newton iteration using between 24-48 decimal
digits precision. The reason is that we don’t want to waste calculation using higher than
necessary precision, so when dealing with well isolated roots we only need 1 or 2 iterations to get
the result using only 24-32 decimal precision, while when dealing with multiple root we will need a
lot more. Most multiple roots I have tested need between 40-48 decimal precision before we are
satisfied with the result.

Secondly we use Interval arithmetic to really bind the error in the evaluation of f(x) thereby
having a much more precise estimate of the true rounding errors in the calculation of f(x).

Thirdly we do all calculation using the original polynomial completely avoiding any deflation or the
first, second or n -1 derivate of the polynomial. However by always using the original polynomial
we need to take special care that a root does not snap to another root thereby reducing the
number of roots found instead of improving them!

And finally special handling of multiple roots is done to ensure maximum precision.

Now all previous three examples yields:

Solution after root refinement is:
Root Iter. REAL IMAG
1: 39 + 1.000000000000001e+000
2: 0 + 1.000000000000000e+000
3: 0 + 1.000000000000000e+000
4: 13 + 1.000000000000000e+000
5: 1 + 1.000000000000000e+000
Compute time: 19167 msec. Iterations 53

Solution after root refinement is:
Root Iter. REAL IMAG
1: 0 + 1.000000000000000e+000
2: 0 + 1.000000000000000e+000
3: 34 + 1.000000000000000e+000
4: 41 + 1.000000000000000e+000

15

5: 67 + 1.000000000000002e+000
6: 0 + 1.000000000000000e+000
7: 8 + 1.000000000000000e+000
8: 1 + 1.000000000000000e+000
Compute time: 108466 msec. Iterations 151

Solution after root refinement is:
Root Iter. REAL IMAG
1: 2 - 4.000000000000000e+000
2: 2 + 3.000000000000000e+000
3: 8 + 4.000000000000000e+000
4: 7 - 2.000000000000000e+000
5: 7 - 3.000000000000000e+000
6: 4 + 1.000000000000000e+000
7: 5 - 1.000000000000000e+000
8: 5 + 2.000000000000000e+000
Compute time: 16404 msec. Iterations 40

This is where we want it!

The implementation.

Root polishing tries to improve the founded roots by applying the method using the original
polynomial for all roots. This will avoid the errors introduce in the deflation of the polynomial
however special provision has to be made to ensure that the refine algorithm does not suddenly
snap to another of the found root thereby loosing a root instead of improving it. WinSolve use the
following method to refine the roots found by any of the selected methods irregardless of whether
the polynomial used real or complex coefficients.

1) For any root of zero we accept is a real root of the original polynomial and zero roots is
therefore skipped throughout the refinement process.

2) To avoid a root to snap to another root and thereby loosing the root we first established
an isolation circle around each root. This circle represents the limited of the search area
and is guaranteeing to be isolated from any other root.

3) Each root is tried using the polynomial original coefficients with a standard Newton
iteration. All roots found are typical very close to the real roots and therefore is not critical
which method e.g. Newton, Laguerre or Halley to use. However the function evaluation is
done using interval arithmetic that by definition always will give us a correct upper bound
of the error in the calculation of f(x). So when we can’t improve the root due to calculating
error we stop the improvement for that root. Also if a Newton steps goes outside the
isolation circle defined for that root the Newton will returned with an indication of a
possible multiple root.

4) Step 3 works well for isolated roots however when dealing with multiple roots the circle
gets very small and therefore will not be very useful. Instead we use a special
improvement for multiple root original suggested by C. Bond. The method in short is for
multiple roots both the f(x) and its f’(x) has the same zero. E.g. a double root for f(x)
contains only one of its double roots for its first derivate f’(x). By differentiate a number of
times you essentially strip of the multiple root until there is only one left in which case it
will easy to solve and the Newton iteration will quickly bound the root.

5) Now how do we detect multiple roots? Well if a Newton iterations walks out of the circle
of isolation from the other roots we are typically dealing with a multiple root problem and
we use C. Bond approach to reduce the multiplicity of the root and solved that. However
the Newton() function also use another criteria for determine of multiple roots. Since we
are using interval arithmetic it will be easy to detect if the interval in the evaluation of f(x)
and f’(x) contain zero. If it does it will mean that both f(x) and f’(x) has the same zero or is

16

so close that you can’t distinguished these roots from each other. In which case we use
C. Bond suggestion to finding the multiple root.

6) Now when iterating using Newton method we usual start out using 24 digits decimal
precision, which for well isolated roots is enough. When encountered multiple root we will
need higher precision to really “get the root”. So the Newton method has been enhanced
so that after we exhaust the precision of a giving search and we still are not satisfied with
the result. We simple increase the precision with 8 decimal digits and repeat the Newton
iteration. This continuous until we no longer can detect a change in the root based on its
standard IEEE754 representation. For most root refined we typically end up with a final
round of Newton iterations between 24-40 digits precisions.

7) The stopping criteria for our root refinement procedure are when the result does not
change the root using the standard IEEE754 representation. e.g. when two successive
Newton iterations using p and p+8 decimal digits precisions does not change the root as
represented by the IEEE754 standard.

Any drawbacks?

The refinement process is slow compare to the basis solver methods. Both the higher precision
arithmetic and interval arithmetic really eats up a lot of CPU time. On a Windows 2000 PC with a
700MHz Pentium III CPU various test polynomial between the degrees of 5 to 10 took about 2-10
seconds too refined while the basic solver found the initial roots in less than 10msec!

Any questions or comments:
Please email me at: hve@hvks.com

Disclaimer:
Permission to use, copy and distribute this software and documentation for any purpose is hereby
granted without fee, provided:
THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, XPRESS,
IMPLIED OR THERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL
Henrik Vestermark, Future Team Aps, BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

mailto:hve@hvks.com

17

Reference:

Kaj Madsen
“ A Root-finding Algorithm based on Newton’s Method”
Bit 13 (1973) pp 71-75.

J.A.Grant & G.D.Hitching
“Two Algorithms for the solution of Polynomial Equations to Limiting Machine Precision”
Computer Journal Volume 18 Number 3 (August 1973)

J.H.Wilkinson
“Rounding Errors in Algebraic Processes”
Prentice-Hall, 1963

A. M. Ostrowski
“Solution of Equations and Systems of Equations”
Academic Press, 1966

D. Adam
“A stopping criteria for polynomial root-finding”
Comm. Acm 10 (1967) pp 655-658

C. Bond
A Method for finding Real and Complex Roots of Real Polynomials with Multiple roots
(2002)

C. Bond
A Robust Strategy for Finding All Real and Complex Roots of Real Polynomials
(2003)

W Press, S Teukolsky, W Vetterling, B Flannery
Numerical recipes in C. 2

nd
edition

Malajovich, G. & Zubelli, J. P.
"On the Geometry of Graeffe Iteration."
Informes de Mathemática, Série B-118, IMPA.

Malajovich, G. & Zubelli, J. P.
"Tangent Graeffe Iteration."
27 Aug 1999. http://xxx.lanl.gov/abs/math.AG/9908150/.

M.A.Jenkins & J.F.Traub
”A three-stage Algorithm for Real Polynomials using Quadratic iteration”
SIAM J Numerical Analysis, Vol. 7, No.4, December 1970

Durand-Kerner
http://en.wikipedia.org/wiki/Durand-Kerner_method)

http://xxx.lanl.gov/abs/math.AG/9908150/
http://en.wikipedia.org/wiki/Durand-Kerner_method

